3.426 \(\int \frac{1}{\cos ^{\frac{7}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=211 \[ -\frac{\sin (c+d x)}{4 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}}+\frac{\sin (c+d x)}{2 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}}-\frac{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{7 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{4 \sqrt{a} d} \]

[Out]

(7*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(4*Sqrt[a]*
d) - (Sqrt[2]*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*Sqrt[Cos[c
 + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + Sin[c + d*x]/(2*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) - Si
n[c + d*x]/(4*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.475004, antiderivative size = 211, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {4264, 3822, 4021, 4023, 3808, 206, 3801, 215} \[ -\frac{\sin (c+d x)}{4 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}}+\frac{\sin (c+d x)}{2 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}}-\frac{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{7 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{4 \sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(7/2)*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

(7*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(4*Sqrt[a]*
d) - (Sqrt[2]*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*Sqrt[Cos[c
 + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + Sin[c + d*x]/(2*d*Cos[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) - Si
n[c + d*x]/(4*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]])

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 3822

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*d^2
*Cot[e + f*x]*(d*Csc[e + f*x])^(n - 2))/(f*(2*n - 3)*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[d^2/(b*(2*n - 3)), I
nt[((d*Csc[e + f*x])^(n - 2)*(2*b*(n - 2) - a*Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b,
d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n]

Rule 4021

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[(B*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/(f*(m + n
)), x] + Dist[d/(b*(m + n)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)*Simp[b*B*(n - 1) + (A*b*(m +
n) + a*B*m)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b
^2, 0] && GtQ[n, 1]

Rule 4023

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{1}{\cos ^{\frac{7}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{7}{2}}(c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx\\ &=\frac{\sin (c+d x)}{2 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sec ^{\frac{3}{2}}(c+d x) (3 a-a \sec (c+d x))}{\sqrt{a+a \sec (c+d x)}} \, dx}{4 a}\\ &=\frac{\sin (c+d x)}{2 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}-\frac{\sin (c+d x)}{4 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)} \left (-\frac{a^2}{2}+\frac{7}{2} a^2 \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{4 a^2}\\ &=\frac{\sin (c+d x)}{2 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}-\frac{\sin (c+d x)}{4 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}-\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+a \sec (c+d x)}} \, dx+\frac{\left (7 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)} \, dx}{8 a}\\ &=\frac{\sin (c+d x)}{2 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}-\frac{\sin (c+d x)}{4 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{\left (2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}-\frac{\left (7 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{a}}} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{4 a d}\\ &=\frac{7 \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{4 \sqrt{a} d}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{\sqrt{a} d}+\frac{\sin (c+d x)}{2 d \cos ^{\frac{5}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}-\frac{\sin (c+d x)}{4 d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.380735, size = 178, normalized size = 0.84 \[ \frac{\sin (c+d x) \sqrt{\cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x) \left (2 \sqrt{1-\sec (c+d x)} \sec ^{\frac{3}{2}}(c+d x)-\sqrt{-(\sec (c+d x)-1) \sec (c+d x)}-\sin ^{-1}\left (\sqrt{1-\sec (c+d x)}\right )-8 \sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )+4 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{\sec (c+d x)}}{\sqrt{1-\sec (c+d x)}}\right )\right )}{4 d \sqrt{1-\sec (c+d x)} \sqrt{a (\sec (c+d x)+1)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/(Cos[c + d*x]^(7/2)*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

(Sqrt[Cos[c + d*x]]*Sec[c + d*x]^(3/2)*(-ArcSin[Sqrt[1 - Sec[c + d*x]]] - 8*ArcSin[Sqrt[Sec[c + d*x]]] + 4*Sqr
t[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]] + 2*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2)
 - Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])])*Sin[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*
x])])

________________________________________________________________________________________

Maple [A]  time = 0.204, size = 247, normalized size = 1.2 \begin{align*}{\frac{-1+\cos \left ( dx+c \right ) }{8\,ad \left ( \sin \left ( dx+c \right ) \right ) ^{2}} \left ( -7\,\sqrt{2}\arctan \left ( 1/4\,\sqrt{2}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \left ( \cos \left ( dx+c \right ) +1+\sin \left ( dx+c \right ) \right ) \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}+7\,\sqrt{2}\arctan \left ( 1/4\,\sqrt{2}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \left ( \cos \left ( dx+c \right ) +1-\sin \left ( dx+c \right ) \right ) \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}+16\,\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}+2\,\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) -4\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}{\frac{1}{\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}}} \left ( \cos \left ( dx+c \right ) \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/8/d/a*(-1+cos(d*x+c))*(-7*2^(1/2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*co
s(d*x+c)^2+7*2^(1/2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(d*x+c)^2+16*a
rctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2+2*(-2/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)*sin(d*x+c)
-4*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d*x+c)^2/(-2/(cos(d*x+c)+1))^
(1/2)/cos(d*x+c)^(3/2)

________________________________________________________________________________________

Maxima [B]  time = 2.26965, size = 2222, normalized size = 10.53 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/16*(4*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(7/2*arctan2(sin(d*x + c), cos(d*x + c))) -
 20*(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin(d*x + c), cos(d*x + c))) + 20*
(sqrt(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c))) - 4*(sqrt
(2)*sin(4*d*x + 4*c) + 2*sqrt(2)*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 7*(2*(2*cos(
2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*
d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c
), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c
), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 7*(2*(2*cos(2*d*x + 2*c) + 1
)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2
*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))
)^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))
) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + 7*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*
c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*
sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*
arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*si
n(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 7*(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x +
 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)
^2 + 4*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x
+ c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(si
n(d*x + c), cos(d*x + c))) + 2) - 8*(sqrt(2)*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(4
*d*x + 4*c)^2 + 4*sqrt(2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*sin(2*d*x + 2*c)^2 + 2*(2*sqrt(2)*cos(
2*d*x + 2*c) + sqrt(2))*cos(4*d*x + 4*c) + 4*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(cos(1/2*arctan2(sin(d*x +
 c), cos(d*x + c)))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d
*x + c))) + 1) + 8*(sqrt(2)*cos(4*d*x + 4*c)^2 + 4*sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(4*d*x + 4*c)^2 + 4
*sqrt(2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*sin(2*d*x + 2*c)^2 + 2*(2*sqrt(2)*cos(2*d*x + 2*c) + sq
rt(2))*cos(4*d*x + 4*c) + 4*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)
))^2 + sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 1) -
4*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(7/2*arctan2(sin(d*x + c), cos(d*x + c)
)) + 20*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(5/2*arctan2(sin(d*x + c), cos(d*
x + c))) - 20*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(3/2*arctan2(sin(d*x + c),
cos(d*x + c))) + 4*(sqrt(2)*cos(4*d*x + 4*c) + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/2*arctan2(sin(d*x +
 c), cos(d*x + c))))/((2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2
 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*s
qrt(a)*d)

________________________________________________________________________________________

Fricas [A]  time = 1.93779, size = 1480, normalized size = 7.01 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/16*(4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*(cos(
d*x + c)^3 + cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))
*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)
^2)) - 8*sqrt(2)*(a*cos(d*x + c)^3 + a*cos(d*x + c)^2)*log(-(cos(d*x + c)^2 + 2*sqrt(2)*sqrt((a*cos(d*x + c) +
 a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x +
c) + 1))/sqrt(a))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2), 1/8*(8*sqrt(2)*(a*cos(d*x + c)^3 + a*cos(d*x + c)
^2)*sqrt(-1/a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + c))/sin(d*x +
c)) - 2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) + 7*(cos(d*
x + c)^3 + cos(d*x + c)^2)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c
))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(7/2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \sec \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(a*sec(d*x + c) + a)*cos(d*x + c)^(7/2)), x)